Class TrajectoryRotation3DPtr


  • public class TrajectoryRotation3DPtr
    extends java.lang.Object
    Ptr stores a pointer and optionally takes ownership of the value.
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      TrajectoryRotation3D __ref__()
      Dereferencing operator.
      TrajectoryRotation3DCPtr cptr()  
      Rotation3D ddx​(double t)
      Acceleration of trajectory at time t

      Returns the acceleration of the trajectory at time t \in[startTime(), endTime()].

      void delete()  
      TrajectoryRotation3D deref()
      The pointer stored in the object.
      double duration()
      Total duration of the trajectory.

      The duration of the Trajectory corresponds to the time it takes to
      run through it.

      If the trajectory is empty, then -1 is returned.
      Rotation3D dx​(double t)
      Velocity of trajectory at time t

      Returns the velocity of the trajectory at time t \in[startTime(), endTime()].

      double endTime()
      Returns the endTime of the trajectory.

      The end time equals startTime() + duration().

      boolean equals​(TrajectoryRotation3D p)  
      static long getCPtr​(TrajectoryRotation3DPtr obj)  
      TrajectoryRotation3D getDeref()
      Member access operator.
      TrajectoryIteratorRotation3DPtr getIterator()
      Returns a bi-directional interator for running through the trajectory.

      For some trajectory types it may be significantly more efficient to run through
      using an iterator, rather than using random access.


      Pointer to the iterator.
      TrajectoryIteratorRotation3DPtr getIterator​(double dt)
      Returns a bi-directional interator for running through the trajectory.

      For some trajectory types it may be significantly more efficient to run through
      using an iterator, rather than using random access.

      SWIGTYPE_p_std__vectorT_rw__math__Rotation3DT_double_t_t getPath​(double dt)
      Constructs a discrete path based on the trajectory.

      If uniform = true the path will be divided into the smallest number of
      uniform steps for which the time stepsize <= dt.

      If uniform = false the path is divided into steps of duration dt, except the
      last interval which may be shorter to include the end point.

      SWIGTYPE_p_std__vectorT_rw__math__Rotation3DT_double_t_t getPath​(double dt, boolean uniform)
      Constructs a discrete path based on the trajectory.

      If uniform = true the path will be divided into the smallest number of
      uniform steps for which the time stepsize <= dt.

      If uniform = false the path is divided into steps of duration dt, except the
      last interval which may be shorter to include the end point.

      boolean isNull()
      checks if the pointer is null
      boolean isShared()
      check if this Ptr has shared ownership or none
      ownership
      double startTime()
      Returns the startTime of the trajectory

      Rotation3D x​(double t)
      Position of trajectory at time t

      Returns the position of the trajectory at time t \in[startTime(), endTime()].

      • Methods inherited from class java.lang.Object

        equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • TrajectoryRotation3DPtr

        public TrajectoryRotation3DPtr​(long cPtr,
                                       boolean cMemoryOwn)
      • TrajectoryRotation3DPtr

        public TrajectoryRotation3DPtr()
        Default constructor yielding a NULL-pointer.
      • TrajectoryRotation3DPtr

        public TrajectoryRotation3DPtr​(TrajectoryRotation3D ptr)
        Do not take ownership of ptr.

        ptr can be null.

        The constructor is implicit on purpose.
    • Method Detail

      • delete

        public void delete()
      • isShared

        public boolean isShared()
        check if this Ptr has shared ownership or none
        ownership
        Returns:
        true if Ptr has shared ownership, false if it has no ownership.
      • isNull

        public boolean isNull()
        checks if the pointer is null
        Returns:
        Returns true if the pointer is null
      • x

        public Rotation3D x​(double t)
        Position of trajectory at time t

        Returns the position of the trajectory at time t \in[startTime(), endTime()].

        Parameters:
        t - [in] time between startTime() and endTime()
        Returns:
        Position
      • dx

        public Rotation3D dx​(double t)
        Velocity of trajectory at time t

        Returns the velocity of the trajectory at time t \in[startTime(), endTime()].

        Parameters:
        t - [in] time between startTime() and endTime()
        Returns:
        Velocity
      • ddx

        public Rotation3D ddx​(double t)
        Acceleration of trajectory at time t

        Returns the acceleration of the trajectory at time t \in[startTime(), endTime()].

        Parameters:
        t - [in] time between startTime() and endTime()
        Returns:
        Acceleration
      • duration

        public double duration()
        Total duration of the trajectory.

        The duration of the Trajectory corresponds to the time it takes to
        run through it.

        If the trajectory is empty, then -1 is returned.
      • startTime

        public double startTime()
        Returns the startTime of the trajectory

        Returns:
        Start time
      • endTime

        public double endTime()
        Returns the endTime of the trajectory.

        The end time equals startTime() + duration().

        Returns:
        The end time
      • getPath

        public SWIGTYPE_p_std__vectorT_rw__math__Rotation3DT_double_t_t getPath​(double dt,
                                                                                boolean uniform)
        Constructs a discrete path based on the trajectory.

        If uniform = true the path will be divided into the smallest number of
        uniform steps for which the time stepsize <= dt.

        If uniform = false the path is divided into steps of duration dt, except the
        last interval which may be shorter to include the end point.

        Parameters:
        dt - [in] Step size
        uniform - [in] Whether to sample the path uniformly
        Returns:
        The discrete path.
      • getPath

        public SWIGTYPE_p_std__vectorT_rw__math__Rotation3DT_double_t_t getPath​(double dt)
        Constructs a discrete path based on the trajectory.

        If uniform = true the path will be divided into the smallest number of
        uniform steps for which the time stepsize <= dt.

        If uniform = false the path is divided into steps of duration dt, except the
        last interval which may be shorter to include the end point.

        Parameters:
        dt - [in] Step size

        Returns:
        The discrete path.
      • getIterator

        public TrajectoryIteratorRotation3DPtr getIterator​(double dt)
        Returns a bi-directional interator for running through the trajectory.

        For some trajectory types it may be significantly more efficient to run through
        using an iterator, rather than using random access.

        Parameters:
        dt - [in] The default time step used when using the ++ or -- operators in the
        iterator
        Pointer to the iterator. The pointer has ownership.
      • getIterator

        public TrajectoryIteratorRotation3DPtr getIterator()
        Returns a bi-directional interator for running through the trajectory.

        For some trajectory types it may be significantly more efficient to run through
        using an iterator, rather than using random access.


        Pointer to the iterator. The pointer has ownership.