Package org.robwork.sdurw_math
Class PolynomialNDEigenVector3idComplexDouble
- java.lang.Object
- 
- org.robwork.sdurw_math.PolynomialNDEigenVector3idComplexDouble
 
- 
 public class PolynomialNDEigenVector3idComplexDouble extends java.lang.ObjectRepresentation of a polynomial that can have non-scalar coefficients (polynomial
 matrix).
 
 Representation of a polynomial of the following form:
 
 f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
 
 The polynomial is represented as a list of coefficients ordered from lowest-order term to
 highest-order term, {c_0,c_1,...,c_n}.
- 
- 
Constructor SummaryConstructors Constructor Description PolynomialNDEigenVector3idComplexDouble(long order)Create polynomial with uninitialized coefficients.PolynomialNDEigenVector3idComplexDouble(long cPtr, boolean cMemoryOwn)PolynomialNDEigenVector3idComplexDouble(PolynomialNDEigenVector3idComplexDouble p)Create polynomial from other polynomial.PolynomialNDEigenVector3idComplexDouble(VectorEigenVector3id coefficients)Create polynomial from vector.
 - 
Method Summary
 
- 
- 
- 
Constructor Detail- 
PolynomialNDEigenVector3idComplexDoublepublic PolynomialNDEigenVector3idComplexDouble(long cPtr, boolean cMemoryOwn)
 - 
PolynomialNDEigenVector3idComplexDoublepublic PolynomialNDEigenVector3idComplexDouble(long order) Create polynomial with uninitialized coefficients.- Parameters:
- order- [in] the order of the polynomial.
 
 - 
PolynomialNDEigenVector3idComplexDoublepublic PolynomialNDEigenVector3idComplexDouble(VectorEigenVector3id coefficients) Create polynomial from vector.- Parameters:
- coefficients- [in] the coefficients ordered from lowest-order term to highest-order
 term.
 
 - 
PolynomialNDEigenVector3idComplexDoublepublic PolynomialNDEigenVector3idComplexDouble(PolynomialNDEigenVector3idComplexDouble p) Create polynomial from other polynomial.- Parameters:
- p- [in] the polynomial to copy.
 
 
- 
 - 
Method Detail- 
getCPtrpublic static long getCPtr(PolynomialNDEigenVector3idComplexDouble obj) 
 - 
deletepublic void delete() 
 - 
orderpublic long order() Get the order of the polynomial (the highest power).- Returns:
- the order.
 
 - 
increaseOrderpublic void increaseOrder(long increase, EigenVector3id value)Increase the order of this polynomial.- Parameters:
- increase- [in] how much to increase the order (default is 1).
- value- [in] initialize new coefficients to this value.
 
 - 
increaseOrderpublic void increaseOrder(long increase) 
 - 
increaseOrderpublic void increaseOrder() 
 - 
evaluatepublic EigenVector3id evaluate(complexd x) Evaluate the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
- Returns:
- the value f(x).
 
 - 
evaluateDerivativespublic VectorEigenVector3id evaluateDerivatives(complexd x, long n) Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
- n- [in] the number of derivatives to find (default is the first derivative only)
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
 
 - 
evaluateDerivativespublic VectorEigenVector3id evaluateDerivatives(complexd x) Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
 
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
 
 - 
deflatepublic PolynomialNDEigenVector3idComplexDouble deflate(complexd x) Perform deflation of polynomial.- Parameters:
- x- [in] a root of the polynomial.
- Returns:
- a new polynomial of same order minus one.
 Note: There is no check that the given root is in fact a root of the polynomial.
 
 - 
derivativepublic PolynomialNDEigenVector3idComplexDouble derivative(long n) Get the derivative polynomial.- Parameters:
- n- [in] gives the n'th derivative (default is n=1).
- Returns:
- a new polynomial of same order minus one.
 Note: To evaluate derivatives use the evaluate derivative method which is more precise.
 
 - 
derivativepublic PolynomialNDEigenVector3idComplexDouble derivative() Get the derivative polynomial.
 - Returns:
- a new polynomial of same order minus one.
 Note: To evaluate derivatives use the evaluate derivative method which is more precise.
 
 - 
getpublic EigenVector3id get(long i) 
 - 
setpublic void set(long i, EigenVector3id d)
 - 
multiplypublic PolynomialNDEigenVector3idComplexDouble multiply(complexd s) Scalar multiplication- Parameters:
- s- [in] scalar to multiply with.
- Returns:
- new polynomial after multiplication.
 
 - 
dividepublic PolynomialNDEigenVector3idComplexDouble divide(complexd s) Scalar division- Parameters:
- s- [in] scalar to divide with.
- Returns:
- new polynomial after division.
 
 - 
multiplyAssignpublic PolynomialNDEigenVector3idComplexDouble multiplyAssign(complexd s) Scalar multiplication- Parameters:
- s- [in] the scalar to multiply with.
- Returns:
- reference to same polynomial with changed coefficients.
 
 - 
devideAssignpublic PolynomialNDEigenVector3idComplexDouble devideAssign(complexd s) Scalar division- Parameters:
- s- [in] the scalar to divide with.
- Returns:
- reference to same polynomial with changed coefficients.
 
 - 
subtractpublic PolynomialNDEigenVector3idComplexDouble subtract(PolynomialNDEigenVector3idComplexDouble b) Polynomial subtraction.- Parameters:
- b- [in] polynomial of to subtract.
- Returns:
- new polynomial after subtraction.
 
 - 
subtractAssignpublic PolynomialNDEigenVector3idComplexDouble subtractAssign(PolynomialNDEigenVector3idComplexDouble b) Polynomial subtraction.- Parameters:
- b- [in] polynomial to subtract.
- Returns:
- same polynomial with different coefficients after subtraction.
 
 - 
addpublic PolynomialNDEigenVector3idComplexDouble add(PolynomialNDEigenVector3idComplexDouble b) Polynomial addition.- Parameters:
- b- [in] polynomial to add.
- Returns:
- new polynomial after addition.
 
 - 
addAssignpublic PolynomialNDEigenVector3idComplexDouble addAssign(PolynomialNDEigenVector3idComplexDouble b) Polynomial addition.- Parameters:
- b- [in] polynomial to add.
- Returns:
- same polynomial with different coefficients after addition.
 
 - 
assignpublic void assign(PolynomialNDEigenVector3idComplexDouble b) Assignment.- Parameters:
- b- [in] the polynomial to take coefficients from.
 
 - 
negatepublic PolynomialNDEigenVector3idComplexDouble negate() Negate coefficients.- Returns:
- new polynomial with coefficients negated.
 
 - 
toStringpublic java.lang.String toString() - Overrides:
- toStringin class- java.lang.Object
 
 - 
equalspublic boolean equals(PolynomialNDEigenVector3idComplexDouble b) Check if polynomials are equal.- Parameters:
- b- [in] the polynomial to compare with.
- Returns:
- true if equal, false if not.
 
 
- 
 
-