Package org.robwork.sdurw_math
Class PolynomialNDEigenMatrix3dDouble
- java.lang.Object
-
- org.robwork.sdurw_math.PolynomialNDEigenMatrix3dDouble
-
public class PolynomialNDEigenMatrix3dDouble extends java.lang.Object
Representation of a polynomial that can have non-scalar coefficients (polynomial
matrix).
Representation of a polynomial of the following form:
f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
The polynomial is represented as a list of coefficients ordered from lowest-order term to
highest-order term, {c_0,c_1,...,c_n}.
-
-
Constructor Summary
Constructors Constructor Description PolynomialNDEigenMatrix3dDouble(long order)
Create polynomial with uninitialized coefficients.PolynomialNDEigenMatrix3dDouble(long cPtr, boolean cMemoryOwn)
PolynomialNDEigenMatrix3dDouble(PolynomialNDEigenMatrix3dDouble p)
Create polynomial from other polynomial.PolynomialNDEigenMatrix3dDouble(VectorEigenMatrix3d coefficients)
Create polynomial from vector.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDEigenMatrix3dDouble
add(PolynomialNDEigenMatrix3dDouble b)
Polynomial addition.PolynomialNDEigenMatrix3dDouble
addAssign(PolynomialNDEigenMatrix3dDouble b)
Polynomial addition.void
assign(PolynomialNDEigenMatrix3dDouble b)
Assignment.PolynomialNDEigenMatrix3dDouble
deflate(double x)
Perform deflation of polynomial.void
delete()
PolynomialNDEigenMatrix3dDouble
derivative()
Get the derivative polynomial.
PolynomialNDEigenMatrix3dDouble
derivative(long n)
Get the derivative polynomial.PolynomialNDEigenMatrix3dDouble
devideAssign(double s)
Scalar divisionPolynomialNDEigenMatrix3dDouble
divide(double s)
Scalar divisionboolean
equals(PolynomialNDEigenMatrix3dDouble b)
Check if polynomials are equal.EigenMatrix3d
evaluate(double x)
Evaluate the polynomial using Horner's Method.VectorEigenMatrix3d
evaluateDerivatives(double x)
Evaluate the first n derivatives of the polynomial using Horner's Method.VectorEigenMatrix3d
evaluateDerivatives(double x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.EigenMatrix3d
get(long i)
static long
getCPtr(PolynomialNDEigenMatrix3dDouble obj)
void
increaseOrder()
void
increaseOrder(long increase)
void
increaseOrder(long increase, EigenMatrix3d value)
Increase the order of this polynomial.PolynomialNDEigenMatrix3dDouble
multiply(double s)
Scalar multiplicationPolynomialNDEigenMatrix3dDouble
multiplyAssign(double s)
Scalar multiplicationPolynomialNDEigenMatrix3dDouble
negate()
Negate coefficients.long
order()
Get the order of the polynomial (the highest power).void
set(long i, EigenMatrix3d d)
PolynomialNDEigenMatrix3dDouble
subtract(PolynomialNDEigenMatrix3dDouble b)
Polynomial subtraction.PolynomialNDEigenMatrix3dDouble
subtractAssign(PolynomialNDEigenMatrix3dDouble b)
Polynomial subtraction.java.lang.String
toString()
-
-
-
Constructor Detail
-
PolynomialNDEigenMatrix3dDouble
public PolynomialNDEigenMatrix3dDouble(long cPtr, boolean cMemoryOwn)
-
PolynomialNDEigenMatrix3dDouble
public PolynomialNDEigenMatrix3dDouble(long order)
Create polynomial with uninitialized coefficients.- Parameters:
order
- [in] the order of the polynomial.
-
PolynomialNDEigenMatrix3dDouble
public PolynomialNDEigenMatrix3dDouble(VectorEigenMatrix3d coefficients)
Create polynomial from vector.- Parameters:
coefficients
- [in] the coefficients ordered from lowest-order term to highest-order
term.
-
PolynomialNDEigenMatrix3dDouble
public PolynomialNDEigenMatrix3dDouble(PolynomialNDEigenMatrix3dDouble p)
Create polynomial from other polynomial.- Parameters:
p
- [in] the polynomial to copy.
-
-
Method Detail
-
getCPtr
public static long getCPtr(PolynomialNDEigenMatrix3dDouble obj)
-
delete
public void delete()
-
order
public long order()
Get the order of the polynomial (the highest power).- Returns:
- the order.
-
increaseOrder
public void increaseOrder(long increase, EigenMatrix3d value)
Increase the order of this polynomial.- Parameters:
increase
- [in] how much to increase the order (default is 1).value
- [in] initialize new coefficients to this value.
-
increaseOrder
public void increaseOrder(long increase)
-
increaseOrder
public void increaseOrder()
-
evaluate
public EigenMatrix3d evaluate(double x)
Evaluate the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.- Returns:
- the value f(x).
-
evaluateDerivatives
public VectorEigenMatrix3d evaluateDerivatives(double x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.n
- [in] the number of derivatives to find (default is the first derivative only)- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
evaluateDerivatives
public VectorEigenMatrix3d evaluateDerivatives(double x)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
deflate
public PolynomialNDEigenMatrix3dDouble deflate(double x)
Perform deflation of polynomial.- Parameters:
x
- [in] a root of the polynomial.- Returns:
- a new polynomial of same order minus one.
Note: There is no check that the given root is in fact a root of the polynomial.
-
derivative
public PolynomialNDEigenMatrix3dDouble derivative(long n)
Get the derivative polynomial.- Parameters:
n
- [in] gives the n'th derivative (default is n=1).- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
derivative
public PolynomialNDEigenMatrix3dDouble derivative()
Get the derivative polynomial.
- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
get
public EigenMatrix3d get(long i)
-
set
public void set(long i, EigenMatrix3d d)
-
multiply
public PolynomialNDEigenMatrix3dDouble multiply(double s)
Scalar multiplication- Parameters:
s
- [in] scalar to multiply with.- Returns:
- new polynomial after multiplication.
-
divide
public PolynomialNDEigenMatrix3dDouble divide(double s)
Scalar division- Parameters:
s
- [in] scalar to divide with.- Returns:
- new polynomial after division.
-
multiplyAssign
public PolynomialNDEigenMatrix3dDouble multiplyAssign(double s)
Scalar multiplication- Parameters:
s
- [in] the scalar to multiply with.- Returns:
- reference to same polynomial with changed coefficients.
-
devideAssign
public PolynomialNDEigenMatrix3dDouble devideAssign(double s)
Scalar division- Parameters:
s
- [in] the scalar to divide with.- Returns:
- reference to same polynomial with changed coefficients.
-
subtract
public PolynomialNDEigenMatrix3dDouble subtract(PolynomialNDEigenMatrix3dDouble b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial of to subtract.- Returns:
- new polynomial after subtraction.
-
subtractAssign
public PolynomialNDEigenMatrix3dDouble subtractAssign(PolynomialNDEigenMatrix3dDouble b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial to subtract.- Returns:
- same polynomial with different coefficients after subtraction.
-
add
public PolynomialNDEigenMatrix3dDouble add(PolynomialNDEigenMatrix3dDouble b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- new polynomial after addition.
-
addAssign
public PolynomialNDEigenMatrix3dDouble addAssign(PolynomialNDEigenMatrix3dDouble b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- same polynomial with different coefficients after addition.
-
assign
public void assign(PolynomialNDEigenMatrix3dDouble b)
Assignment.- Parameters:
b
- [in] the polynomial to take coefficients from.
-
negate
public PolynomialNDEigenMatrix3dDouble negate()
Negate coefficients.- Returns:
- new polynomial with coefficients negated.
-
toString
public java.lang.String toString()
- Overrides:
toString
in classjava.lang.Object
-
equals
public boolean equals(PolynomialNDEigenMatrix3dDouble b)
Check if polynomials are equal.- Parameters:
b
- [in] the polynomial to compare with.- Returns:
- true if equal, false if not.
-
-