Class DeviceCPtr


  • public class DeviceCPtr
    extends java.lang.Object
    Ptr stores a pointer and optionally takes ownership of the value.
    • Constructor Summary

      Constructors 
      Constructor Description
      DeviceCPtr()
      Default constructor yielding a NULL-pointer.
      DeviceCPtr​(long cPtr, boolean cMemoryOwn)  
      DeviceCPtr​(Device ptr)
      Do not take ownership of ptr.

      ptr can be null.

      The constructor is implicit on purpose.
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      Device __ref__()
      Dereferencing operator.
      Jacobian baseJend​(State state)
      Calculates the jacobian matrix of the end-effector described
      in the robot base frame ^{base}_{end}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

      Jacobian baseJframe​(Frame frame, State state)
      Calculates the jacobian matrix of a frame f described in the
      robot base frame ^{base}_{frame}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

      Jacobian baseJframes​(FrameVector frames, State state)
      The Jacobian for a sequence of frames.

      A Jacobian is computed for each of the frames and the Jacobians are
      stacked on top of eachother.
      Transform3Dd baseTend​(State state)
      Calculates the homogeneous transform from base to the end frame
      \robabx{base}{end}{\mathbf{T}}
      Transform3Dd baseTframe​(Frame f, State state)
      Calculates the homogeneous transform from base to a frame f
      \robabx{b}{f}{\mathbf{T}}
      void delete()  
      Device deref()
      The pointer stored in the object.
      boolean equals​(Device p)  
      Q getAccelerationLimits()
      Returns the maximal acceleration of the joints
      \mathbf{\ddot{q}}_{max}\in \mathbb{R}^n

      It is assumed that \ddot{\mathbf{q}}_{min}=-\ddot{\mathbf{q}}_{max}

      PairQ getBounds()
      Returns the upper \mathbf{q}_{min} \in \mathbb{R}^n and
      lower \mathbf{q}_{max} \in \mathbb{R}^n bounds of the joint space

      static long getCPtr​(DeviceCPtr obj)  
      Device getDeref()
      Member access operator.
      long getDOF()
      Returns number of active joints
      java.lang.String getName()
      Returns the name of the device
      Q getQ​(State state)
      Gets configuration vector \mathbf{q}\in \mathbb{R}^n

      Q getVelocityLimits()
      Returns the maximal velocity of the joints
      \mathbf{\dot{q}}_{max}\in \mathbb{R}^n

      It is assumed that \dot{\mathbf{q}}_{min}=-\dot{\mathbf{q}}_{max}

      boolean isNull()
      checks if the pointer is null
      boolean isShared()
      check if this Ptr has shared ownership or none
      ownership
      void setQ​(Q q, State state)
      Sets configuration vector \mathbf{q} \in \mathbb{R}^n

      Transform3Dd worldTbase​(State state)
      Calculates the homogeneous transform from world to base \robabx{w}{b}{\mathbf{T}}

      • Methods inherited from class java.lang.Object

        equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • DeviceCPtr

        public DeviceCPtr​(long cPtr,
                          boolean cMemoryOwn)
      • DeviceCPtr

        public DeviceCPtr()
        Default constructor yielding a NULL-pointer.
      • DeviceCPtr

        public DeviceCPtr​(Device ptr)
        Do not take ownership of ptr.

        ptr can be null.

        The constructor is implicit on purpose.
    • Method Detail

      • getCPtr

        public static long getCPtr​(DeviceCPtr obj)
      • delete

        public void delete()
      • deref

        public Device deref()
        The pointer stored in the object.
      • __ref__

        public Device __ref__()
        Dereferencing operator.
      • getDeref

        public Device getDeref()
        Member access operator.
      • equals

        public boolean equals​(Device p)
      • isShared

        public boolean isShared()
        check if this Ptr has shared ownership or none
        ownership
        Returns:
        true if Ptr has shared ownership, false if it has no ownership.
      • isNull

        public boolean isNull()
        checks if the pointer is null
        Returns:
        Returns true if the pointer is null
      • setQ

        public void setQ​(Q q,
                         State state)
        Sets configuration vector \mathbf{q} \in \mathbb{R}^n

        Parameters:
        q - [in] configuration vector \mathbf{q}
        state - [in] state into which to set \mathbf{q}

      • getQ

        public Q getQ​(State state)
        Gets configuration vector \mathbf{q}\in \mathbb{R}^n

        Parameters:
        state - [in] state from which which to get \mathbf{q}
        Returns:
        configuration vector \mathbf{q}
      • getBounds

        public PairQ getBounds()
        Returns the upper \mathbf{q}_{min} \in \mathbb{R}^n and
        lower \mathbf{q}_{max} \in \mathbb{R}^n bounds of the joint space

        Returns:
        std::pair containing (\mathbf{q}_{min}, \mathbf{q}_{max})
      • getVelocityLimits

        public Q getVelocityLimits()
        Returns the maximal velocity of the joints
        \mathbf{\dot{q}}_{max}\in \mathbb{R}^n

        It is assumed that \dot{\mathbf{q}}_{min}=-\dot{\mathbf{q}}_{max}

        Returns:
        the maximal velocity
      • getAccelerationLimits

        public Q getAccelerationLimits()
        Returns the maximal acceleration of the joints
        \mathbf{\ddot{q}}_{max}\in \mathbb{R}^n

        It is assumed that \ddot{\mathbf{q}}_{min}=-\ddot{\mathbf{q}}_{max}

        Returns:
        the maximal acceleration
      • getDOF

        public long getDOF()
        Returns number of active joints
        Returns:
        number of active joints n
      • getName

        public java.lang.String getName()
        Returns the name of the device
        Returns:
        name of the device
      • baseTframe

        public Transform3Dd baseTframe​(Frame f,
                                       State state)
        Calculates the homogeneous transform from base to a frame f
        \robabx{b}{f}{\mathbf{T}}
        Returns:
        the homogeneous transform \robabx{b}{f}{\mathbf{T}}
      • baseTend

        public Transform3Dd baseTend​(State state)
        Calculates the homogeneous transform from base to the end frame
        \robabx{base}{end}{\mathbf{T}}
        Returns:
        the homogeneous transform \robabx{base}{end}{\mathbf{T}}
      • worldTbase

        public Transform3Dd worldTbase​(State state)
        Calculates the homogeneous transform from world to base \robabx{w}{b}{\mathbf{T}}

        Returns:
        the homogeneous transform \robabx{w}{b}{\mathbf{T}}
      • baseJend

        public Jacobian baseJend​(State state)
        Calculates the jacobian matrix of the end-effector described
        in the robot base frame ^{base}_{end}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        Parameters:
        state - [in] State for which to calculate the Jacobian

        Returns:
        the 6*ndof jacobian matrix: {^{base}_{end}}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        This method calculates the jacobian relating joint velocities ( \mathbf{\dot{q}} ) to the end-effector velocity seen from
        base-frame ( \nu^{ase}_{end} )

        \nu^{base}_{end} = {^{base}_{end}}\mathbf{J}_\mathbf{q}(\mathbf{q})\mathbf{\dot{q}}


        The jacobian matrix {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q})
        is defined as:

        {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \frac{\partial ^{base}\mathbf{x}_n}{\partial \mathbf{q}}

        Where:
        {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \left[ \begin{array}{cccc} {^{base}_1}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) {^{base}_2}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) \cdots {^b_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) \\ \end{array} \right]
        where {^{base}_i}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) is defined by
        {^{base}_i}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \begin{array}{cc} \left[ \begin{array}{c} {^{base}}\mathbf{z}_i \times {^{i}\mathbf{p}_n} \\ {^{base}}\mathbf{z}_i \\ \end{array} \right] \textrm{revolute joint} \end{array}
        {^{base}_i}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \begin{array}{cc} \left[ \begin{array}{c} {^{base}}\mathbf{z}_i \\ \mathbf{0} \\ \end{array} \right] \textrm{prismatic joint} \\ \end{array}

        By default the method forwards to baseJframe().
      • baseJframe

        public Jacobian baseJframe​(Frame frame,
                                   State state)
        Calculates the jacobian matrix of a frame f described in the
        robot base frame ^{base}_{frame}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        Parameters:
        frame - [in] Frame for which to calculate the Jacobian
        state - [in] State for which to calculate the Jacobian

        Returns:
        the 6*ndof jacobian matrix: {^{base}_{frame}}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        This method calculates the jacobian relating joint velocities ( \mathbf{\dot{q}} ) to the frame f velocity seen from base-frame
        ( \nu^{base}_{frame} )

        \nu^{base}_{frame} = {^{base}_{frame}}\mathbf{J}_\mathbf{q}(\mathbf{q})\mathbf{\dot{q}}


        The jacobian matrix {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q})
        is defined as:

        {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \frac{\partial ^{base}\mathbf{x}_n}{\partial \mathbf{q}}

        By default the method forwards to baseJframes().
      • baseJframes

        public Jacobian baseJframes​(FrameVector frames,
                                    State state)
        The Jacobian for a sequence of frames.

        A Jacobian is computed for each of the frames and the Jacobians are
        stacked on top of eachother.
        Parameters:
        frames - [in] the frames to calculate the frames from
        state - [in] the state to calculate in
        Returns:
        the jacobian