Package org.robwork.sdurw_trajectory
Class CubicSplineInterpolatorRotation3D
- java.lang.Object
-
- org.robwork.sdurw_trajectory.InterpolatorRotation3D
-
- org.robwork.sdurw_trajectory.CubicSplineInterpolatorRotation3D
-
public class CubicSplineInterpolatorRotation3D extends InterpolatorRotation3D
This class represents a 3-degree polynomial function, used
in Cubic Splines hence the name CubicSegment.
\bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3
-
-
Constructor Summary
Constructors Constructor Description CubicSplineInterpolatorRotation3D(long cPtr, boolean cMemoryOwn)CubicSplineInterpolatorRotation3D(Rotation3D a, Rotation3D b, Rotation3D c, Rotation3D d, double duration)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Rotation3Dddx(double t)
Note: The second derivative is a 1-degree polynomial:
\bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot tvoiddelete()doubleduration()Returns the duration of the interpolator
The duration is defined as the time it takes to move from one end
of the interpolator to the other.Rotation3Ddx(double t)
Note: The derivative is a 2-degree polynomial:
\bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2static longgetCPtr(CubicSplineInterpolatorRotation3D obj)Rotation3Dx(double t)
Note: The cubic polynomial is given by a 3-degree polynomial:
\bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3-
Methods inherited from class org.robwork.sdurw_trajectory.InterpolatorRotation3D
getCPtr
-
-
-
-
Constructor Detail
-
CubicSplineInterpolatorRotation3D
public CubicSplineInterpolatorRotation3D(long cPtr, boolean cMemoryOwn)
-
CubicSplineInterpolatorRotation3D
public CubicSplineInterpolatorRotation3D(Rotation3D a, Rotation3D b, Rotation3D c, Rotation3D d, double duration)
-
-
Method Detail
-
getCPtr
public static long getCPtr(CubicSplineInterpolatorRotation3D obj)
-
delete
public void delete()
- Overrides:
deletein classInterpolatorRotation3D
-
x
public Rotation3D x(double t)
Note: The cubic polynomial is given by a 3-degree polynomial:
\bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3- Overrides:
xin classInterpolatorRotation3D- Parameters:
t- [in] time between 0 and length- Returns:
- Position
-
dx
public Rotation3D dx(double t)
Note: The derivative is a 2-degree polynomial:
\bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2- Overrides:
dxin classInterpolatorRotation3D- Parameters:
t- [in] time between 0 and length- Returns:
- Velocity
-
ddx
public Rotation3D ddx(double t)
Note: The second derivative is a 1-degree polynomial:
\bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t- Overrides:
ddxin classInterpolatorRotation3D- Parameters:
t- [in] time between 0 and length- Returns:
- Acceleration
-
duration
public double duration()
Description copied from class:InterpolatorRotation3DReturns the duration of the interpolator
The duration is defined as the time it takes to move from one end
of the interpolator to the other.- Overrides:
durationin classInterpolatorRotation3D- Returns:
- duration
-
-