Package org.robwork.sdurw_math
Class PolynomialNDidComplexDouble
- java.lang.Object
-
- org.robwork.sdurw_math.PolynomialNDidComplexDouble
-
public class PolynomialNDidComplexDouble extends java.lang.ObjectRepresentation of a polynomial that can have non-scalar coefficients (polynomial
matrix).
Representation of a polynomial of the following form:
f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
The polynomial is represented as a list of coefficients ordered from lowest-order term to
highest-order term, {c_0,c_1,...,c_n}.
-
-
Constructor Summary
Constructors Constructor Description PolynomialNDidComplexDouble(long order)Create polynomial with uninitialized coefficients.PolynomialNDidComplexDouble(long cPtr, boolean cMemoryOwn)PolynomialNDidComplexDouble(VectorComplexDouble coefficients)Create polynomial from vector.PolynomialNDidComplexDouble(PolynomialNDidComplexDouble p)Create polynomial from other polynomial.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDidComplexDoubleadd(PolynomialNDidComplexDouble b)Polynomial addition.PolynomialNDidComplexDoubleaddAssign(PolynomialNDidComplexDouble b)Polynomial addition.voidassign(PolynomialNDidComplexDouble b)Assignment.PolynomialNDidComplexDoubledeflate(complexd x)Perform deflation of polynomial.voiddelete()PolynomialNDidComplexDoublederivative()Get the derivative polynomial.
PolynomialNDidComplexDoublederivative(long n)Get the derivative polynomial.PolynomialNDidComplexDoubledevideAssign(complexd s)Scalar divisionPolynomialNDidComplexDoubledivide(complexd s)Scalar divisionbooleanequals(PolynomialNDidComplexDouble b)Check if polynomials are equal.complexdevaluate(complexd x)Evaluate the polynomial using Horner's Method.VectorComplexDoubleevaluateDerivatives(complexd x)Evaluate the first n derivatives of the polynomial using Horner's Method.VectorComplexDoubleevaluateDerivatives(complexd x, long n)Evaluate the first n derivatives of the polynomial using Horner's Method.complexdget(long i)static longgetCPtr(PolynomialNDidComplexDouble obj)voidincreaseOrder()voidincreaseOrder(long increase)voidincreaseOrder(long increase, complexd value)Increase the order of this polynomial.PolynomialNDidComplexDoublemultiply(complexd s)Scalar multiplicationPolynomialNDidComplexDoublemultiplyAssign(complexd s)Scalar multiplicationPolynomialNDidComplexDoublenegate()Negate coefficients.longorder()Get the order of the polynomial (the highest power).voidset(long i, complexd d)PolynomialNDidComplexDoublesubtract(PolynomialNDidComplexDouble b)Polynomial subtraction.PolynomialNDidComplexDoublesubtractAssign(PolynomialNDidComplexDouble b)Polynomial subtraction.java.lang.StringtoString()
-
-
-
Constructor Detail
-
PolynomialNDidComplexDouble
public PolynomialNDidComplexDouble(long cPtr, boolean cMemoryOwn)
-
PolynomialNDidComplexDouble
public PolynomialNDidComplexDouble(long order)
Create polynomial with uninitialized coefficients.- Parameters:
order- [in] the order of the polynomial.
-
PolynomialNDidComplexDouble
public PolynomialNDidComplexDouble(VectorComplexDouble coefficients)
Create polynomial from vector.- Parameters:
coefficients- [in] the coefficients ordered from lowest-order term to highest-order
term.
-
PolynomialNDidComplexDouble
public PolynomialNDidComplexDouble(PolynomialNDidComplexDouble p)
Create polynomial from other polynomial.- Parameters:
p- [in] the polynomial to copy.
-
-
Method Detail
-
getCPtr
public static long getCPtr(PolynomialNDidComplexDouble obj)
-
delete
public void delete()
-
order
public long order()
Get the order of the polynomial (the highest power).- Returns:
- the order.
-
increaseOrder
public void increaseOrder(long increase, complexd value)Increase the order of this polynomial.- Parameters:
increase- [in] how much to increase the order (default is 1).value- [in] initialize new coefficients to this value.
-
increaseOrder
public void increaseOrder(long increase)
-
increaseOrder
public void increaseOrder()
-
evaluate
public complexd evaluate(complexd x)
Evaluate the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.- Returns:
- the value f(x).
-
evaluateDerivatives
public VectorComplexDouble evaluateDerivatives(complexd x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.n- [in] the number of derivatives to find (default is the first derivative only)- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
evaluateDerivatives
public VectorComplexDouble evaluateDerivatives(complexd x)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
deflate
public PolynomialNDidComplexDouble deflate(complexd x)
Perform deflation of polynomial.- Parameters:
x- [in] a root of the polynomial.- Returns:
- a new polynomial of same order minus one.
Note: There is no check that the given root is in fact a root of the polynomial.
-
derivative
public PolynomialNDidComplexDouble derivative(long n)
Get the derivative polynomial.- Parameters:
n- [in] gives the n'th derivative (default is n=1).- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
derivative
public PolynomialNDidComplexDouble derivative()
Get the derivative polynomial.
- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
get
public complexd get(long i)
-
set
public void set(long i, complexd d)
-
multiply
public PolynomialNDidComplexDouble multiply(complexd s)
Scalar multiplication- Parameters:
s- [in] scalar to multiply with.- Returns:
- new polynomial after multiplication.
-
divide
public PolynomialNDidComplexDouble divide(complexd s)
Scalar division- Parameters:
s- [in] scalar to divide with.- Returns:
- new polynomial after division.
-
multiplyAssign
public PolynomialNDidComplexDouble multiplyAssign(complexd s)
Scalar multiplication- Parameters:
s- [in] the scalar to multiply with.- Returns:
- reference to same polynomial with changed coefficients.
-
devideAssign
public PolynomialNDidComplexDouble devideAssign(complexd s)
Scalar division- Parameters:
s- [in] the scalar to divide with.- Returns:
- reference to same polynomial with changed coefficients.
-
subtract
public PolynomialNDidComplexDouble subtract(PolynomialNDidComplexDouble b)
Polynomial subtraction.- Parameters:
b- [in] polynomial of to subtract.- Returns:
- new polynomial after subtraction.
-
subtractAssign
public PolynomialNDidComplexDouble subtractAssign(PolynomialNDidComplexDouble b)
Polynomial subtraction.- Parameters:
b- [in] polynomial to subtract.- Returns:
- same polynomial with different coefficients after subtraction.
-
add
public PolynomialNDidComplexDouble add(PolynomialNDidComplexDouble b)
Polynomial addition.- Parameters:
b- [in] polynomial to add.- Returns:
- new polynomial after addition.
-
addAssign
public PolynomialNDidComplexDouble addAssign(PolynomialNDidComplexDouble b)
Polynomial addition.- Parameters:
b- [in] polynomial to add.- Returns:
- same polynomial with different coefficients after addition.
-
assign
public void assign(PolynomialNDidComplexDouble b)
Assignment.- Parameters:
b- [in] the polynomial to take coefficients from.
-
negate
public PolynomialNDidComplexDouble negate()
Negate coefficients.- Returns:
- new polynomial with coefficients negated.
-
toString
public java.lang.String toString()
- Overrides:
toStringin classjava.lang.Object
-
equals
public boolean equals(PolynomialNDidComplexDouble b)
Check if polynomials are equal.- Parameters:
b- [in] the polynomial to compare with.- Returns:
- true if equal, false if not.
-
-