RobWorkProject
23.9.11-
|
Representation of a polynomial that can have non-scalar coefficients (polynomial matrix). More...
Classes | |
class | PolynomialND< Coef, Scalar > |
Representation of a polynomial that can have non-scalar coefficients (polynomial matrix). More... | |
Namespaces | |
rw | |
Deprecated namespace since 16/4-2020 for this class. | |
rw::math | |
Matrices, vectors, configurations, and more. | |
Functions | |
PolynomialND< Eigen::Vector3d > | operator* (const PolynomialND< Eigen::Matrix3d > &A, const PolynomialND< Eigen::Vector3d > &b) |
Multiply 3D polynomial matrix with 3D polynomial vector. More... | |
PolynomialND< Eigen::Matrix< double, 1, 3 > > | operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &a, const PolynomialND< Eigen::Matrix3d > &A) |
Multiply 3D polynomial vector with 3D polynomial matrix. More... | |
PolynomialND< Eigen::Vector3d > | operator* (const PolynomialND< Eigen::Matrix3d > &A, const Eigen::Vector3d &b) |
PolynomialND< Eigen::Matrix< double, 1, 3 > > | operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &a, const Eigen::Matrix3d &A) |
PolynomialND< Eigen::Vector3f, float > | operator* (const PolynomialND< Eigen::Matrix3f, float > &A, const PolynomialND< Eigen::Vector3f, float > &b) |
PolynomialND< Eigen::Matrix< float, 1, 3 >, float > | operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &a, const PolynomialND< Eigen::Matrix3f, float > &A) |
PolynomialND< Eigen::Vector3f, float > | operator* (const PolynomialND< Eigen::Matrix3f, float > &A, const Eigen::Vector3f &b) |
PolynomialND< Eigen::Matrix< float, 1, 3 >, float > | operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &a, const Eigen::Matrix3f &A) |
Representation of a polynomial that can have non-scalar coefficients (polynomial matrix).
Representation of a polynomial of the following form:
\( f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0 \)
The polynomial is represented as a list of coefficients ordered from lowest-order term to highest-order term, \( {c_0,c_1,...,c_n}\).